Skip to main content

Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels

Zoom -
Speaker(s) / Presenter(s):
Professor Marc T. M. Koper

Professor Marc T. M. Koper

Leiden University, Netherlands

Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels


The electrocatalytic reduction of carbon dioxide is a promising approach for storing (excess) renewable electricity as chemicalenergy in fuels. Here, I will discuss recent advances and challenges in the understanding of electrochemical CO2 reduction. I will summarize existing models for the initial activation of CO2 on the electrocatalyst and their importance for understanding selectivity. Carbon–carbon bond formation is also a key mechanistic step in CO2 electroreduction to high-density and high-value fuels. I will show that both the initial CO2 activation and C–C bond formation are influenced by an intricate interplay between surface structure (both on the nano- and on the mesoscale), electrolyte effects (pH, buffer strength, ion effects) and mass transport conditions. This complex interplay is currently still far from being completely understood.

Y.Y.Birdja, E.Perez-Gallent, M.C.Figueiredo, A.J.Göttle, F.Calle-Vallejo, M.T.M.Koper, Nature Energy 4 (2019) 732-745

Host: ECS UK chapter

Type of Event (for grouping events):