Characterization of A-kinase-anchoring disruptors using a solution-based assay.

TitleCharacterization of A-kinase-anchoring disruptors using a solution-based assay.
Publication TypeJournal Article
Year of Publication2006
JournalThe Biochemical journal
Date Published2006

Subcellular localization of PKA (cAMP-dependent protein kinase or protein kinase A) is determined by protein-protein interactions between its R (regulatory) subunits and AKAPs (A-kinase-anchoring proteins). In the present paper, we report the development of the Amplified Luminescent Proximity Homogeneous Assay (AlphaScreen) as a means to characterize AKAP-based peptide competitors of PKA anchoring. In this assay, the prototypic anchoring disruptor Ht31 efficiently competed in RIIalpha isoform binding with RII-specific and dual-specificity AKAPs (IC50 values of 1.4+/-0.2 nM and 6+/-1 nM respectively). In contrast, RIalpha isoform binding to a dual-specific AKAP was less efficiently competed (IC50 of 156+/-10 nM). Characterization of two RI-selective anchoring disruptors, RIAD (RI-anchoring disruptor) and PV-38 revealed that RIAD (IC50 of 13+/-1 nM) was 20-fold more potent than PV-38 (IC50 of 304+/-17 nM) and did not compete in the RIIalpha-AKAP interaction. We also observed that the kinetics of RII displacement from pre-formed PKA-AKAP complexes and competition of RII-AKAP complex formation by Ht31 differed by an order of magnitude when the component parts were mixed in vitro. No such difference in potency was seen for RIalpha-AKAP complexes. Thus the AlphaScreen assay may prove to be a valuable tool for detailed characterization of a variety of PKA-AKAP complexes.

Short TitleBiochem J
Enter your linkblue username.
Enter your linkblue password.
Secure Login

This login is SSL protected